“Mvio

o
SOLUTIONS |
bl

WEBADE
Connection Pooling Guide

Date: November 4, 2005
Revision: 1.4

Vivid Solutions Inc.

Suite #1A, 2328 Government St.
Victoria, BC V8T 5G5

Phone: (250) 385-6040

Fax: (250) 385-6046

Website: www.vividsolutions.com

http://www.vividsolutions.com/

Connection Pooling Guide

Document Change Control

REVISION NUMBER DATE OF ISSUE AUTHOR(S) DESCRIPTION

1.0 Dec 4, 2003 Jason Ross Initial Document

1.1 Dec 7, 2003 Jason Ross Updated with some new
configuration settings

1.2 June 14, 2005 Jason Ross Updated to include
connection wrapping
documentation

1.3 August 11, 2005 Jason Ross Updated the
documentation on
disabling connection
wrapping and connection
wrapper logging.

1.4 November 4, 2005 Jason Ross Updated with minor

layout changes.

Page 2 of 12

Connection Pooling Guide

Table of Contents

1. INTRODUCTION ..+ttt ettt ettt e et e et e et et et e s e b e b et et e e e s e e e 5
2. NEW FEATURES. ¢+ et eventesteseestestestesees s ententens e st et et en s essen s estestesses s es s en s en s ens et et e se s e nseenensenennes 6
2.1 WRAPPED CONNECTION CLASSESvvutintentententententenseseseentessensensessesessensesseseseneeneeenennens 6
2.1.1 RETRIEVING THE WRAPPED OBUJECTuviuveutentententeeetetentetetetestenseseeseseeeneeeeneenes 7
2.1.2 DISABLING WEBADE CONNECTION WRAPPING.c.veuvententententeneeneetensensenseseneeseeeeeeenes 7
2.2 DATABASE CONNECTION IDLE TIMEOUTS ...vuvutintintententententeneenteneeneeseenseneesseseneenseneeneenneneens 8
2.3 DATABASE PINGING -...eueutententententententestesteete e ste e e et ettt et e e et e e enesne e e 8
2.4 SIMPLIFIED CONNECTION POOL CONFIGURATION. ...c.eutiutentintententententensenseneensenseneeseneeneeneennens 8
2.5 CONFIGURABLE BLOCKING WAIT TIMESeuveutententensensensensensensensensessensensensensensensenseneeseennens 8
2.6 IMPROVED LOGGING AND DEBUGGINGvvvnteniententententensensesenseneesseseneesseseneeseneeneenne e 8
2.7 OPTIONAL NON-POOLING CONNECTIONSuvutntentententententensensensensessenseneensensensesenseneeneennens 9
3. CONFIGURATION ...ttt ettt ettt b ettt et et et et et e et e b e et et e ete e e e e 10
3.1 CONNECTION POOL SETTINGS. c..c.veuvtatentententeteteasestessestestesaestestessessessesse st et nee e e ene e 10
3101 DATABASE URL ...tetittiteateete ettt ettt ete ettt st ettt ettt et et e b et et e s et et et ene s 10
3.1.2 DATABASE USER.teuteetiteteteeteateateeteete bt eteste st besbesbesbesbe b e saesbe st e et e nte s et nne e 10
3.1.3 DATABASE PASSWORD.....c.etuttetiateteteteateateateeteateetestestesbestesbestesbessesae st et eneenenne e 10
3104 MIN CONNECTIONS. ...ttt ettt ete ettt sttt bbbt ebeebe st et saeene s et et e nne e 10
31,5 MAX CONNECTIONS ..ttt ettt eteete sttt ete et et besbe b e sbe e besbe st et eae s e b et e e ene e 10
31,6 MAX CONNECTION IDLE TIME .. .ttuvtattatenteteteteetestestessestestestesbestesnessesnessensensenenee e 11
31,7 MAX CONNECTION WAIT TIMEtutttiteteeteeteeteete st ete st steste st st ste st bt e e ne e 11
31,8 MONITOR SLEEP TIME ...uvuvtetateaeeteteetesteatesteesestestessestesbesnessenaestessessensensensenennenes 11
3.1.9 POOL CONNECTIONS FLAGvtutiutiateatetetententesteatessessestestessessessessessesaensensenseseneennes 11
3110 PING CONNECTIONS FLAGuttuttateatetetetententestestestestestestesteseestesseseensensenseneneennes 11
4. FUTURE CHANGES. ¢ttt ettt ettt ettt ettt ettt b et et et b et et et et e et ettt esneebesnene s 12
4.1 CHANGING THE WAIT QUEUE TO A PRIORITY QUEUEcuviuvitentetetentesteniestestesee e nseneeneeeennens 12
4.2 FORCE QUIT AND MONITORING OF LOST CONNECTIONSviuvearententeteteteeetensenuesneneeeeneeneen. 12
4.3 DYNAMIC POOL SETTINGS. c...veuvtateatentetentententeateaseasestessestessestessesbessessesaestennensesesneenennens 12
44 JMXSUPPORT ..ottt ettt ettt ettt ettt eb et bttt ettt b e b et b e bbb et et et et ene e e 12

Page 3 of 12

Connection Pooling Guide

Page 4 of 12

Ministry of Forests WebADE

1. INTRODUCTION

This document details the changes to the WebADE core API, regarding the new
implementation of connection pooling, replacing the Oracle reference implementation (found
in classes12.zip).

Page 5 of 12

Ministry of Forests WebADE

2. NEW FEATURES

Below is a description of the new additions to the WebADE connection pooling, and changes
to the core API.

2.1

WRAPPED CONNECTION CLASSES

The WebADE connection pooling API, by default, now wraps many of the classes in
the java.sqgl package of the underlying JDBC implementation with internal WebADE
classes implementing the same standard JDBC interfaces.

By wrapping these classes, WebADE can step in and handle situations where bugs in
a deployed application cause database resources to be left open, such as where a
connection is not closed due to an exception being thrown in the application code. In
a situation such as this, WebADE can clean up the open resource on garbage
collection.

Instances of the following classes are wrapped by WebADE classes, when returned
by calls to the WebADE API:

- java.sqgl.CallableStatement

- java.sqgl.Connection

- java.sql.PreparedStatement

- java.sgl.ResultSet

- java.sgl.Statement

Because WebADE wraps these objects with an internal class implementing the
appropriate java.sql interface, you cannot directly cast these objects to a database-
specific implementation class, like OracleConnection, OracleStatement, and
OracleResultSet.

If you require access to these wrapped database-specific implementation objects,
you can either cast the returned object to the WebADE-wrapper implementation
class and call a special getWrappedXXX() method on this object or disable the
connection wrapping by setting the appropriate system property.

Page 6 of 12

Ministry of Forests WebADE

2.1.1

2.1.2

RETRIEVING THE WRAPPED OBJECT

Below are code sample for retrieving the wrapped database-specific
implementation objects.

CONNECTION CLASS

i nport ca. bc. gov. webade. dbpool . W apper Connect i on;

Application app = ...
Connection conn = app. get Connecti onByAction(...);

W apper Connecti on wconn = (W apper Connect i on) conn;
Connect i on w appedConn = wconn. get W appedConnecti on();

STATEMENT CLASS

i nport ca. bc. gov. webade. dbpool . W apper St at enent ;

Appl i cati on app
Connecti on conn app. get Connect i onByAction(...);

Statenent stmt = conn.createStatenent();
W apper St at ement wstnt = (W apper St at enent) conn;
St at enent wr appedStmt = wstnt. get W appedSt at enent () ;

NOTE: This code sample also works for WrapperPreparedStatement and
WrapperCallableStatement classes, as these classes extend WrapperStatement.

RESULTSET CLASS

i nport ca. bc. gov. webade. dbpool . W apper Resul t Set ;

Appl i cati on app

Connecti on conn app. get Connecti onByAction(...);
Statenent stmt = conn.createStatenment();
ResultSet rs = stnt.executeQuery(...)

W apper Resul t Set ws = (W apper Resul t Set) conn;
Resul t Set wrappedRs = ws. get WappedResul t Set () ;

DISABLING WEBADE CONNECTION WRAPPING

In extreme circumstances, it may be necessary to disable the WebADE
connection wrapping altogether. This is not recommended, but, if needed, it can

Page 7 of 12

Ministry of Forests WebADE

2.2

2.3

2.4

2.5

2.6

be done by setting the "webade.use.wrapper.connections" system property to
“false”.

NOTE: This should be set as a system property at the java command line, as
follows:

\ - Dnebade. use. wr apper . connect i ons=f al se

This property should only be set as a short term fix for deployment situations,
where the deployed application is not behaving properly.

DATABASE CONNECTION IDLE TIMEOUTS

Database connections are now closed, if the connection has been sitting available in
the pool past a given idle time, in minutes.

DATABASE PINGING

Database connections can be configured to be “ping”-ed before being handed out to
the application, to ensure that the database connection has not been closed, due to
databases going down.

SIMPLIFIED CONNECTION POOL CONFIGURATION

WebADE connection pool configuration is now much more simplified, by default not
requiring an application to write any code to get the connection pools initialized.
Previously, the application developer was required to create each connection pool
and register these pools with the WebADE.

CONFIGURABLE BLOCKING WAIT TIMES

Previously, applications could only either block indefinitely while waiting for a
connection, or not block at all. Application threads requesting connection pools can
now have a third option to obtaining connection from the pool. Block for a specific
amount of time (In milliseconds).

IMPROVED LOGGING AND DEBUGGING

Logs are now output when a connection is retrieved from the queue, returned to the
queue, and when database errors occur. These logs will indicate the target pooled
connection (by hash code) and which pool it is associated with (by role).

When a connection, statement, or result set is not closed properly, by calling the
close() method on the wrapper object, at garbage collection time, the wrapper object
will print a full stack trace at the time the wrapper object was created, to help the

Page 8 of 12

Ministry of Forests WebADE

developer to locate the section of offending code in their application. (See below for
an example)

WARN ca. bc. gov. webade. dbpool . W apper Connecti on - Connection: 23047631 cl osed
by garbage collector. Connection checked out

at
ca. bc. gov. webade. dbpool . WebADEConnect i onCache. get Connect i on(WebADEConnect i onC
ache.j ava: 187)

at
ca. bc. gov. webade. dbpool . Connect i onCacheTest er. openConnect i on(Connect i onCacheT
ester.java: 76)

at
ca. bc. gov. webade. dbpool . Connect i onCacheTest er. t est Uncl osedConnect i on(Connect i
onCacheTest er. j ava: 62)

at
sun. refl ect. Nati veMet hodAccessor | npl . i nvokeO(Nat i veMet hodAccessor | npl . j ava: Na
tive Met hod)
at
sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nat i veMet hodAccessor | npl . j ava: 39)
at
sun. refl ect. Del egat i ngMet hodAccessor | npl . i nvoke(Del egat i ngMet hodAccessor | npl .
j ava: 25)

at java.lang.reflect. Method. i nvoke(Met hod. j ava: 324)

at junit.framework. Test Case. runTest (Test Case. j ava: 154)

at junit.framework. Test Case. runBar e(Test Case. j ava: 127)

at junit.framework. Test Resul t $1. prot ect (Test Resul t. j ava: 106)

at junit.framework. Test Resul t.runProtect ed(Test Result.java: 124)

at junit.framework. Test Resul t.run(Test Result.java: 109)

at junit.framework. Test Case. run(Test Case. j ava: 118)

at junit.framework. Test Suite.runTest (Test Suite.java: 208)

at junit.framework. Test Suite.run(TestSuite.java: 203)

at
org.eclipse.jdt.internal.junit.runner.RenoteTest Runner.runTests(Renot eTest Run
ner.java: 478)

at
org.eclipse.jdt.internal.junit.runner.RenoteTest Runner.run(Renot eTest Runner .]
ava: 344)

at
org.eclipse.jdt.internal.junit.runner.RenoteTest Runner. mai n(Renot eTest Runner
j ava: 196)

2.7 OPTIONAL NON-POOLING CONNECTIONS

It is possible to prevent connections from being pooled, by setting the appropriate
flag in the configuration settings.

Page 9 of 12

Ministry of Forests WebADE

3. CONFIGURATION

3.1 CONNECTION POOL SETTINGS

Pools, by default, now require no initialization from the application developer. The
default settings for each connection pool parameter are described below. If you wish
to override the settings for your application roles’ connection pools, modify the
appropriate columns in the WebADE PROXY_CONTROL table for the role’s connection
poll table entry.

3.1.1 DATABASE URL

The Database URL is a properly formatted JDBC URL for the target database. This
field is mandatory, and will be retrieved from the WebADE database by the
Application object.

3.1.2 DATABASE USER

The Database User is a user id with access to the target database. This field is
mandatory, and will be retrieved from the WebADE database by the Application
object.

3.1.3 DATABASE PASSWORD

The Database Password is the password for the above user id. This field is
mandatory, and will be retrieved from the WebADE database by the Application
object.

3.1.4 MIN CONNECTIONS

The minimum number of connections that will be open at any given time. This field
is optional, with a default value of 0.

3.1.5 MAX CONNECTIONS

The maximum number of connections that will be open at any given time. This field
is optional, with a default value of 5.

Page 10 of 12

Ministry of Forests WebADE

3.1.6 MAX CONNECTION IDLE TIME

The maximum time, in minutes, a connection should remain open while available in
the pool. If the idle time is set to 0, the connection will be left open indefinitely.
This field is optional, with a default value of 10 minutes.

3.1.7 MAX CONNECTION WAIT TIME

The maximum time, in milliseconds, a thread should block while waiting for an
available connection. If the wait time is set to 0, the thread will block indefinitely. If
the wait time is set to -1, the thread will not block at all. If the thread waits past its
wait time (or is set not to block), the connection request will return null. This field is
optional, with a default value of 0 (Indefinite blocking).

3.1.8 MONITOR SLEEP TIME

The time the cache monitor thread will wait, in minutes, between connection pool
checks. During each check, the monitor will close any connections in the pool that
have been idle for longer than the max connection idle time. This field is optional,
with a default value of 1 minute.

3.1.9 PooL CONNECTIONS FLAG

A flag indicating whether or not to pool database connections. Valid values are
“true” and “false”. This field is optional, with a default value of true.

3.1.10 PING CONNECTIONS FLAG

A flag indicating whether or not to ping database connections before handing them
out. This setting is intended to allow a testing of the connection, before the
connection is handed out, to prevent closed connections from being used by an
application. If the connection is closed, the error is trapped, and a good connection
is created, and handed to the requesting thread. Valid values are “true” and “false”.
This field is optional, with a default value of false.

Page 11 of 12

Ministry of Forests WebADE

4. FUTURE CHANGES

4.1

4.2

4.3

4.4

CHANGING THE WAIT QUEUE TO A PRIORITY QUEUE

Allow requests for connections to have a priority, to allow behind-the-scenes
processes (batch processes) to be superseded by user requests for connection pools,
for more responsive user requests.

FORCE QUIT AND MONITORING OF LOST CONNECTIONS

Allow the connection pool monitor to forcefully terminate connections that have been
checked out for too long. This is particularly useful for connections that were not
closed before the code using them loses scope.

DYNAMIC POOL SETTINGS

Allow connection pool settings to be modified on the fly, instead of only at
initialization time, as it is now.

JMX SUPPORT

Add support for the Java Management Extensions API. This will allow the remote
administration/monitoring of the pools at runtime. It could also allow for actually
growing and shrinking of the pools without stopping the application. The JIMX
support could also be expanded to monitor and manage all aspects of the WebADE.
Once the JMX infrastructure is in place, it is simply a matter of creating a MBean
(Managed Bean) to instrument the WebADE objects. Little effort with great gains.

Page 12 of 12

	1. INTRODUCTION
	2. NEW FEATURES
	2.1 WRAPPED CONNECTION CLASSES
	2.1.1 RETRIEVING THE WRAPPED OBJECT
	2.1.2 DISABLING WEBADE CONNECTION WRAPPING

	2.2 DATABASE CONNECTION IDLE TIMEOUTS
	2.3 DATABASE PINGING
	2.4 SIMPLIFIED CONNECTION POOL CONFIGURATION
	2.5 CONFIGURABLE BLOCKING WAIT TIMES
	2.6 IMPROVED LOGGING AND DEBUGGING
	2.7 OPTIONAL NON-POOLING CONNECTIONS

	3. CONFIGURATION
	3.1 CONNECTION POOL SETTINGS
	3.1.1 DATABASE URL
	3.1.2 DATABASE USER
	3.1.3 DATABASE PASSWORD
	3.1.4 MIN CONNECTIONS
	3.1.5 MAX CONNECTIONS
	3.1.6 MAX CONNECTION IDLE TIME
	3.1.7 MAX CONNECTION WAIT TIME
	3.1.8 MONITOR SLEEP TIME
	3.1.9 POOL CONNECTIONS FLAG
	3.1.10 PING CONNECTIONS FLAG

	4. FUTURE CHANGES
	4.1 CHANGING THE WAIT QUEUE TO A PRIORITY QUEUE
	4.2 FORCE QUIT AND MONITORING OF LOST CONNECTIONS
	4.3 DYNAMIC POOL SETTINGS
	4.4 JMX SUPPORT

