“Mvip

i --]
SOLUTIONS e

WEBADE 4.2.0
User’s Guide

Client:
Date:
Revision:

BC Provincial Government
March 31, 2008
2

Vivid Solutions Inc.

Suite #1A, 2328 Government St.
Victoria, BC V8T 5G5

Phone: (250) 385-6040

Fax: (250) 385-6046

Website: www.vividsolutions.com

http://www.vividsolutions.com/

BC Provincial Government

WebADE 4.2.0 User’s Guide

REVISION NUMBER

Document Change Control

DATE OF ISSUE
May 16, 2005

AUTHOR(S)

Jason Ross

DESCRIPTION
Original draft

1.1

1.2

1.3
1.4

1.5

1.6

1.7

June 2, 2005

August 11, 2005

November 4, 2005
February 20, 2006

March 23, 2006

July 20, 2006

September 25, 2006

March 31, 2008

Jason Ross

Jason Ross

Jason Ross
Jason Ross

Jason Ross

Jason Ross

Jason Ross

Jason Ross

Revised much of the text
and layout.

Added a section on
additional user information
available to the developer
(Section 2.2.1)

Updated for WebADE 4.1

Added documentation.for
getAuthorizedUser()
methods.

Fixed getConnectionByAction
sample code that was
syntactically incorrect.

Updated the user searching
documentation to reflect the
newer API, and removed
references in the
documentation to the
deprecated User object.

Updated the documentation
to reflect WebADE 4.1.8 API.

Updated document for
WebADE 4.2.0

Page 2 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

Table of Contents

1. INTRODUCTION TO THE WEBADEuiiniiiiiniiiiitiitii ittt et e e aeeae e as 5
1.1 L0 | 5
1.2 PREREQUISITES .. ettt ettt ettt e e a e aeeaeaeaaes 6

2. THE WEBADE APPLICATION SINGLETON. ...ttt 7
2.1 TESTING THE SAMPLES OUTSIDE A WEB APPLICATIONcvviniiiiiiiiiiiiiiinien e 7
2.2 USER CREDENTIALS ... ettt ettt e e aeaeaaes 8
2.3 USER AUTHORIZATIONS L..eiiiiniiiiii e et ae s e e aeaees 8

2.3.1 SECURED-BY-ORGANIZATION VS NON-SECURED-BY-ORGANIZATIONc.ovviiiniiniiniiiiininiinnnne, 9
2.3.2 RETRIEVING OTHER USERS’ PERMISSIONSouviiiiiiiiiiiiiiiiiiiiii e 10
2.3.3 OTHER ATTRIBUTES ...ttt e a s 10
2.4 USER INFORMATION. .. ettt et e e eaeaeaaes 11
2.4.1 RETRIEVING OTHER USER’S INFORMATIONcuiiiiiiiiiiiiiiiiii i 11
2.4.2 WEBADEUSERINFO ATTRIBUTES. ...ututiniiiiiiiii e 11
2.4.3 ADDITIONAL USER TYPE-SPECIFIC ATTRIBUTEScuiiiiiiiiiiiiiiiiiiiiiineci e 12
2.4.4 USING THE WEBADEUSERINFO GETATTRIBUTE() METHOD.......cociiuiiiiiiiniiiiiiiiiiiiiieneens 13
2.4.5 RETRIEVING A LIST OF USERS BY ROLE/ORGANIZATION......cociiuiiiiiiiiiiiiiiiiiiiinieieeas 14
2.5 RETRIEVING DATABASE CONNECTIONS SECURELYviiiiiiiiiiiiiiiiiiiiiiiine e 15
2.5.1 RETRIEVING A DATABASE CONNECTION WITHOUT A USER-CONTEXT ...c.vvuviniiniiiiiniiiiiiininnnns 15
2.6 PREFERENCES. .. ettt ettt aeeaeaeaaes 16
2.6.1 THE WEBADEPREFERENCES INTERFACE.......ciiiiiiiiiiiiiiiiiiiiiii e 16
2.6.2 THE WEBADEPREFERENCESET INTERFACE.......cciiiiiiiiiiiiiiiiiiiiiiin e 17
2.6.3 THE WEBADEPREFERENCE INTERFACE ...ttt 17
2.6.4 THE MULTIVALUEWEBADEPREFERENCE INTERFACEcciiiiiiiiiiiiiiiiiiiiiiceeea 17
2.6.5 APPLICATION PREFERENCESttt 18
2.6.6 USER PREFERENCES ...ttt 18
2.6.7 GLOBAL PREFERENCES ...ttt e 19

3. WEB APPLICATIONS AND MVC DESIGNuiuuiitiitititii ittt e ea e e e 20

3.1 WEBADE AND MVC DESIGN ...uiiiiiiiiiiiiiii ittt aeae e 20
3.1.1 USING CUSTOM SERVLETCONTEXTLISTENERSouviiiiiiiiiiiiiiiiinineeeeae 21
3.1.2 USING CUSTOM FILTERS ...ttt aa e 2

3.2 ST RU T S ettt ettt eas 22

Page 3 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

3.3 STRUTS AND THE WEBADEuiitiititiitiiiii ittt ena e aeaeas 22
3.3.1 THE WEBADEACTION CLASS ...ttt e 23

3.4 MORE INFORMATION ...ttt e a e e e e 23

4. WEB APPLICATION INITIALIZATION ...uiitiitiiiiit ettt nae e eaeeas 24
4.1 CONFIGURING THE WEBADEutiitiitiiiiiiiiiiii ittt ettt et ena e e enaeaens 24

4.2 WHAT THE WEBADE DOES AT STARTUPviiiiiiiiiiiiiiiiii e 24

4.3 D e 24

5. WEBADE AND MANAGEMENT OF A USER’S SESSIONuiiuiiiiiniiiiiiiiii i 26
5.1 ORGANIZATION SELECTION L.uuiititiitiitii i et e s a e e aeaeas 26
5.1.1 CONFIGURING ORGANIZATION SELECTION FOR AN APPLICATION ...cuvvviniiniiiiiiiiiiciiiiennne, 26

5.2 USER AGREEMENTS L. ittt et a e aeaeaaes 28

6. ADVANCED TOPICS ... ettt ettt ettt s a ettt et et e e aeeaeaeaenees 29
6.1 DATABASE CONNECTIONS AND CONNECTION POOLS ...c.uiiiiniiiiiiiiiiiiiiiiiccncicn e 29

6.2 WEBADE EXTENSIONS....ceiiitiiiti e a e 29
6.2.1 CREATING A WEBADE EXTENSIONoiuiiiiiiiiiiiiiiiiiin e 29

6.2.2 REGISTERING A WEBADE EXTENSIONouiiuiiiiiiiiiiiiiiiiiiii i 29

6.3 SEARCHING .eiiiiti i et 31
6.3.1 SEARCH OBJECTS AND SEARCH ATTRIBUTESuviniiiiiiiiiiiiiii e 31

6.3.2 ORGANIZATION SEARCHINGuiiuiiiiiiiiiiii i e 32

6.3.3 USER SEARCHING .. .iiuiiiiitiiiii i e aeas 33

6.4 MANAGING USER PREFERENCESuiiiiiiiiiiiiiiii e 33

6.5 ALLOWING BCEID USERS TO VIEW AN IDIR USER EMAIL ADDRESSccivviiiiiiiniiiiiiiiiiiiiiniiienes 35

7. RELATED DOCUMENTATION AND LINKS. ... ouuiitiitititi i 36

Page 4 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

1. INTRODUCTION TO THE WEBADE

The WebADE is a Java-based J2EE application development framework which aides in
delivering common services required by corporate applications. It provides functionality for:

« authorization

« access to user information, such as first and last names and email addresses
» database connection pooling

» logging

« error handling

» pluggable extensions, such as reporting and automated tasks

WebADE provides several advantages to application development, such as presenting
simplified APIs for more complex frameworks and providing a common framework for web
development that is more tailored to the types of applications that are desired by and for
various provincial ministries. Because the WebADE abstracts the actual implementation of
these frameworks, there is also the added benefit of being able to upgrade or even swap
these underlying frameworks without impacting existing WebADE applications. As the
WebADE changes and introduces new functionality, maintaining backwards-compatibility is a
high priority, and sometimes even new functionality (such as improved connection pooling
or application monitoring) can be introduced into existing applications without requiring any
code change at all.

The focus of the WebADE is to provide all of the above benefits to web applications, as
these are the most common multi-user applications today, where access to individual
components of an application are restricted based on a user's authorizations. However, as
most of the core WebADE functionality is not tied to a web environment, it is possible to
create a desktop application that uses the WebADE to manage user authorizations.
Nevertheless, this document will focus on the integration of the WebADE with web
applications, as this is, by far, the primary use of the WebADE.

Finally, it is worthy of note that WebADE 4 introduces several new features, the most
important of which is a distributed user authorization management, using a WebADE-
integrated application called ADAM.

1.1 OVERVIEW

The WebADE is a central part of an application, aiding in authorizing users for
particular application functionality, managing connection pools, and providing a
central access point for extensions that can provide additional services, such as
reporting or automated tasks.

In a web application, the WebADE sits in the middle, intercepting user requests
before they execute business logic, managing database access, restricting a
request's database access to that which is granted to the user executing the request,
and providing other core operations at both application initialization and the
initialization of a user's session.

Page 5 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

Web Client

A

User Authentication (IS, Netegrity)

; Ty
Authorization Conneptlon Extensions]
- Pooling - -

WebADE

O N~
Directories
(IDir, BCelD, MyID) WebADE

o
v

WebADE Application - > App DB
N~

1.2

The WebADE is comprised of several components. From a developer's point of view,
there are two main pieces, a set of Java libraries and a supporting database table
structure.

The Java libraries use the database to poll for the configuration information of the
application, which includes application initialization settings, connection pool
configurations, and user authorizations.

PREREQUISITES

The following are assumed to be in place in preparation for the topics discussed in
this guide. Please refer to the WebADE 4 Administrators Guide for more information
on any of these subjects:

e WebADE database table structure, including supporting stored procedures,
packages, and code table data.

« WebADE application preferences required for internal WebADE use (Such as
user provider connection information for IDIR, BCeID and MYID) should be
properly set in the WebADE database.

e A database user that has permissions to execute all WebADE stored
procedures and packages.

« A WebADE connection jar with the database JDBC URL, user credentials for
the above-mentioned user, and any optional connection pool settings that are
required for the WebADE connection pool that will be created from these
settings.

» A database schema for your application.

« Database users for each WebADE role that requires access to your database.

e The WebADE Java libraries and WebADE connection jar must be included in
your application’s classpath.

Page 6 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

2. THE WEBADE APPLICATION SINGLETON

The main WebADE class is the Application singleton. This singleton contains all methods for
user authorization calls, retrieval of connections from the application's connection pools, and
provides access to any WebADE extensions configured for your application.

As the core WebADE classes are not dependant on any J2EE code, you can load the WebADE
without the need of a web application container, such as OC4J or JRun. This allows you to
test the WebADE configuration of your application before deploying your web application.
You can also use this to perform unit tests of your business logic using a unit testing API
like JUnit.

2.1 TESTING THE SAMPLES OUTSIDE A WEB APPLICATION

All of the examples in this chapter are written assuming they will be run in a web
container. As the HttpRequestUtils methods you will see later in this chapter will not
work without proper ServletContext and HttpServletRequest instances, you can use
the following code examples to create application and user-related objects outside of
a web application context for testing purposes.

To create an instance of the Application singleton outside of a web container, run the
following code (replacing “APP” with the WebADE application acronym of your
WebADE application):

import ca.bc.gov.webade.Application;
import ca.bc.gov.webade.WebADEApplicationUtils;

Application app = WebADEApplicationUtils.createAppl ication(“APP”);

NOTE: You do not need to use this code inside an actual web application, as this will
be created automatically on application initialization.

Once you have the application singleton created, you can create instances of the
WebADEPermissions and WebADEUserInfo objects for a target user by writing the
following code (replacing “IDIR” and "MYUSER"” with the source directory and account
name of the user you wish to use in your code):

NOTE: Before WebADE can lookup your test user, you will need to have configured
the WebADE to use the appropriate user provider to recognize and connect to the
target source directory. See the WebADE 4 Administrator’s Guide for instructions on
how to do this.

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.WebADEApplicationUtils;
import ca.bc.gov.webade.user.UserCredentials;

import ca.bc.gov.webade.user.WebADEUserInfo;

import ca.bc.gov.webade.user.WebADEUserPermissions;

Application app = WebADEApplicationUtils.createAppl ication(“APP");
UserCredentials creds = new UserCredentials();
creds.setSourceDirectory(“IDIR”);

Page 7 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

creds.setAccountName(“MYUSER?”);
WebADEUserlInfo info = app.getWebADEUserInfo(creds);
WebADEUserPermissions auths = app.getWebADEUserPerm issions(creds);

2.2

2.3

USER CREDENTIALS

Since the release of the WebADE 4.1, all users are identified by a UserCredentials
object. This UserCredentials object contains the following attributes:

ATTRIBUTE METHOD DESCRIPTION
getUserGuid The user’s 32-character Hex-value GUID.
getAccountName The user’s unique account name.
getSourceDirectory The source directory containing the user’s account record.
getUserTypeCode The user’'s WebADE User Type Code (GOV, BUP, or UID).

A user’s UserCredentials object can be used to lookup the user's WebADE
permissions, by calling the Application singleton’s getWebADEUserPermissions()
method, and user information, by «calling the Application singleton’s
getWebADEUserInfo() method.

NOTE: It is not necessary to know all of a user’s credentials, in order to locate their
permissions or information. It should be sufficient to supply one of the user’s GUID
or account name (Preferably the user’s GUID) and one of the user’s source directory
or user type code. When the WebADE locates the user’s permissions or information,
any unspecified credentials attributes will be set by the WebADE. That said, is it best
to supply as much of the user’s credentials as possible, as it is possible some of
these values could have changed since you last acquired them.

USER AUTHORIZATIONS

The main purpose of the WebADE is to control a user's access to an application's
actions. An action is any self-contained segment of code that can be called by a
user. Examples of actions, in plain English, would be “Edit a User's Account” or
“View the ABC Report”. From a web application perspective, an action is usually (But
not necessarily) all of the business processing that results from a user sending a
request to the server, such as by clicking on a link or submitting an HTML form.

Each action in an application can be assigned to one or more roles. A role can be
viewed as a defined access to an application that contains a collection of actions that
are all related from a business perspective. Examples of roles would be “Application
User” or “Application Administrator”.

By defining these roles in the application, we now have reasonably-sized sections of
application code that we can allocate to users, authorizing these users access to the
application in the assigned role.

On top of simply granting a role to a user, it is possible in WebADE 4 to grant on
behalf of an organization. See the Organization Selection section in this document
and the ADAM User's Guide for more information about organization-based role
authorization.

Page 8 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

Here is a diagram illustrating the WebADE's view of authorizations.

Iﬂ ca bc.gov webade Uuser] ca.bc.gov.webhade = ca bc.gov.webade
WebADEUserPermissions Role Action

+ UserCredentials getUserCredentials () + Role (Role) 1+ Action (String)

+ Organization[] getOrganizations () + Role (String, Action[]) + Action (String, boolean)

+ Role[] getRoles () + |+ String getMame () * |+ boolean isPriviledged ()

+ Role[] getRolesiotSecuredByOrganization () F =+ Action[] getActions () F - + String gethlame ()

+ Rolg[] getRolesByOrganization (Organization) + hoolzan hasAction (Action) + hoolean equals (Chjsct)

+ boolean isUserinRole (Role) + boolean equals (Ohject) + String toString ()

+ hoolean canPerformbction (Action) +int hashCode () +int hashCodle ()

+ Qrganization getSelectedOrganization () + String toString ()

+ void setSelectedOrganization {(Organization)

+ Organization|] getGovernment Organizations ()

+ Organization[] gethonGovernmentOrganizations ()
+ hoolean isUserinCrganization (Organization)

WebADE uses these authorizations to restrict user access at two points: 1) At the
point of request, before a business code is executed and 2) At any time that access
is required to the application's database.

When a user submits a request, but before any business logic is performed, WebADE
should be called to verify that the user can perform the WebADE action associated
with that logic. This can be done with code similar to the following (replacing
“myActionName” with the name of the target action):

import ca.bc.gov.webade.Action;
import ca.bc.gov.webade.http.HttpRequestUtils;
import ca.bc.gov.webade.user.WebADECurrentUserPermi ssions;

HttpServletRequest req = ...;

WebADECurrentUserPermissions user = HttpRequestUtil s.getCurrentUserPermissions(req);
boolean canPerform = user.canPerformAction(new Acti on(* myAct i onNane"));

if (canPerform) {

}

2.3.1 SECURED-BY-ORGANIZATION VS NON-SECURED-BY-ORGANIZATION

User permissions come in two types, secured-by-organization and non-secured-
by-organization. A user's WebADE role-permission is secured-by-organization if,
when the associated Authorization Profile is granted in ADAM to the user, it is
granted on behalf of an organization. This means the user only is permitted to
perform that role in the target WebADE application while acting for that
organization. If an application is using secure-by-organization permissions, it is
recommended that the application turn on User Organization Selection to allow
WebADE to restrict a user's secured-by-organization permissions in a session to
only those for the organization the user selects for that session. See the section
User Organization Selection for more information.

If a user is granted a WebADE role-permission through an ADAM Authorization
Profile that is not secured-by-organization, the user will have access to that role
in every web session they have for a WebADE web application. If User
Organization Selection is turned on, the user will still have access to this role, no

Page 9 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

matter what organization they select to work on behalf of for the web session.
To get the list of user roles that are non-secured-by-organization, call the
getNonSecuredByOrganizationRoles() method user's WebADEUserPermissions
object. For example:

WebADECurrentUserPermissions perms = HttpRequestUTti Is.getCurrentUserPermissions(req);
Role[] userRoles = perms.getRolesNotSecuredByOrgani zation();

2.3.2 RETRIEVING OTHER USERS’ PERMISSIONS

You may also request any WebADE user’s permissions by retrieving the
Application singleton from the ServletContext, and using code similar to the
following:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.GUID;

import ca.bc.gov.webade.user.UserCredentials ;

import ca.bc.gov.webade.user.UserTypeCode;

import ca.bc.gov.webade.user.WebADEUserPermissions;

ServletContext ctx = ...;

Application app = HttpRequestUtils.getApplication(c tx);
UserCredentials creds = new UserCredentials();
creds.setUserTypeCode(UserTypeCode.GOVERNMENT);

creds.setUserGuid(new GUID(*EC98010245675A6EODAE484 BE047C8A3"));
WebADEUserPermissions auths = app.getWebADEUserPerm issions(creds);

2.3.3 OTHER ATTRIBUTES

The WebADECurrentUserPermissions object returned from the
HttpRequestUtils.getCurrentUserPermissions() method in the above example is
an extended version of the WebADEUserPermissions object in the example
above. These permissions objects contain a certain amount of additional
information about the user, if it is available to the WebADE. This information is
available through the named methods for the following attributes:

ATTRIBUTE METHOD DESCRIPTION

getUserCredentials The user’s identifying credentials, including account name, GUID, source
directory, and user type code.

getOrganizations The set of organizations the user has application authorizations given on
behalf of for the WebADE application.

getRoles The WebADE application roles the user is authorized for.

isUserAuthenticated (Current user only) A flag indicating whether the user has accessed the
application through some form of authentication.

IsWebADEUser (Current user only) A flag indicating whether the current user has been

located in the WebADE system. If the user has been authenticated but cannot
be located within the WebADE itself, this value will be false.

Page 10 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

2.4

USER INFORMATION

Since the release of the WebADE 4.1, user information has been separated from the
user’s WebADE permissions for a specific application. The current user’s information
can be retrieved with code similar to the following:

import ca.bc.gov.webade.http.HttpRequestUtils;
import ca.bc.gov.webade.user.WebADEUserInfo;

HttpServletRequest req = ...;

WebADEUserInfo info = HttpRequestUtils.getCurrentUs erinfo(req);

2.4.1

RETRIEVING OTHER USER’S INFORMATION

You may also request any user’s information by retrieving the Application
singleton from the ServletContext, and using code similar to the following:

import ca.
import ca.
import ca.
import ca.
import ca.
import ca.

ServletContext ctx = ...;

Application app = HttpRequestUtils.getApplication(c tx);
UserCredentials creds = new UserCredentials();
creds.setUserTypeCode(UserTypeCode.GOVERNMENT);

creds.setUserGuid(new GUID(*EC98010245675A6EODAE484 BE047C8A3"));
WebADEUserInfo info = app.getWebADEUserInfo(creds);

bc.gov.webade.Application;
bc.gov.webade.http.HttpRequestUtils;
bc.gov.webade.user.GUID;
bc.gov.webade.user.UserCredentials ;
bc.gov.webade.user.UserTypeCode;
bc.gov.webade.user.WebADEUserInfo;

2.4.2

NOTE: If a call for a user’s information is made to the WebADE during the
processing of another user’s HTTP request, it is possible that the requesting user
does not have the permissions to view the target user’s information. Developers
should take this into account, checking the returned WebADEUserInfo object’s
isVisible() flag before continuing processing of the HTTP request. If this flag is
false, the requesting user is not permitted to view this user’s information, and
the developer should handle this condition properly.

WEBADEUSERINFO ATTRIBUTES
The WebADEUserInfo object has the following attributes:

ATTRIBUTE METHOD DESCRIPTION

getUserCredentials The user’s identifying credentials, including account name, GUID, source
directory, and user type code.

getDisplayName The display name for the user, if available.

getFirstName The first name of the user, if available.

getLastName The last name of the user, if available.

getMiddlelnitial The middle initial of the user’s name, if available.

Page 11 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

getEmailAddress The email address of the user, if available.

getPhoneNumber The phone number of the user, if available.

getExpiryDate The date the user’s account will expire.

isVisible A flag indicating whether the requesting user has the ability to view the user’s

personal information.

2.4.3 ADDITIONAL USER TYPE-SPECIFIC ATTRIBUTES

In additional to the common set of attributes listed above, each WebADE user
type can have additional attributes, specific to that particular user type. To view
these user type-specific attributes, you must cast the WebADEUserInfo object to
the appropriate subclass. Here is an example:

import ca.bc.gov.webade.user.BusinessPartnerUserInf 0;
import ca.bc.gov.webade.user.GovernmentUserlnfo;

import ca.bc.gov.webade.user.IndividualUserlnfo;

import ca.bc.gov.webade.user.WebADEUserInfo;

WebADEUserlInfo info = ...;

if (info instanceof GovernmentUserInfo) {

GovernmentUserInfo govUser = (GovernmentUserInf o)info;
} else if (info instanceof BusinessPartnerUserInfo)
BusinessPartnerUserInfo busPartner = (BusinessP artnerUserlnfo)info;
} else if (info instanceof IndividualUserInfo) {
IndividualUserInfo individual = (IndividualUser Info)info;
}
GOVERNMENTUSERINFO

GovernmentUserInfo has the following additional attributes:

ATTRIBUTE METHOD DESCRIPTION
getAccountType The user's BC Gov Account type.
getEmployeeld The user's employee Id.
isEmployee A flag indicating if the user is a government employee.

BUSINESSPARTNERUSERINFO

BusinessPartnerUserInfo has the following additional attributes:

ATTRIBUTE METHOD DESCRIPTION
getBusinessGUID The user's associated business' GUID.
getBusinessLegalName The user's associated business' legal name.

getBusinessActivationCode | The user's associated business' activation code.

INDIVIDUALUSERINFO

IndividualUserInfo does not currently have any additional attributes.

Page 12 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

2.4.4 USING THE WEBADEUSERINFO GETATTRIBUTE() METHOD

The WebADEUserInfo object has a generic way of fetching a user's attributes.
This generic getAttribute() method allows User Providers to support new
attributes without having to wait for a WebADE release to add the getter and
setter methods to the WebADEUserInfo interface. This loosens the tight-coupling
between WebADE and CAP web service releases.

To obtain a user attribute through this generic interface, call the getAttribute()
method, passing in the reserved unique string for the target attribute. The
WebADE supports the following standard attributes:

webade.user.credentials
webade.user.display.name
webade.user.last.name
webade.user.first.name
webade.user.middle.initial
webade.user.email.address
webade.user.phone.number
webade.user.expiry.date
webade.user.is.visible

For Government users, WebADE supports the following additional standard
attributes:

government.user.account.type
government.user.employee.id

For Business Partner users, WebADE supports the following additional standard
attributes:

business.user.business.GUID
business.user.business.legal.name
business.user.business.activation.code

Here are a couple of examples using the getAttribute() method:

WebADEUserlInfo info = HttpRequestUtils.getCurrentUs erlnfo(request);

UserCredentials creds = (UserCredentials)info.getAt tributeValue(WebADEUserInfo.USER_CREDENTIALS);
String accountType = (String)info.getAttributeValue (GovernmentUserinfo. ACCOUNT_TYPE);

Date expiryDate = (Date)info.getAttributeValue(WebA DEUserInfo.EXPIRY_DATE);

RELATED METHODS

The WebADEUserInfo object has two other new methods related to the
getAttribute() method; getAttributeNames() and hasAttribute().

The getAttributeNames() will return the array of attribute names for the complete
list of attributes the user object contains. Here is an example using this method:

WebADEUserlInfo info = HttpRequestUtils.getCurrentUs erinfo(request);
String[] names = info.getAttributeNames();
for (inti = 0; i < names.length; i++) {

Page 13 of 36

BC Provincial Government

WebADE 4.2.0 User’s Guide

String currentName = namesil;
System.out.printin("User attribute ™ + current
user.getAttributeVValue(currentName) + "");

}

Name + ™ =" +

The hasAttribute() method returns whether the user object supports the attribute

represented by the attribute name string passed in.

examples using this method:

Here are a couple of

DefaultBusinessPartnerUserInfo user = new DefaultBu

assert(user.hasAttribute(WebADEUserInfo. USER_CREDEN
assert(user.hasAttribute(WebADEUserInfo.DISPLAY_NAM
assert(user.hasAttribute(WebADEUserInfo.LAST_NAME))
assert(user.hasAttribute(WebADEUserInfo.FIRST_NAME)
assert(user.hasAttribute(WebADEUserInfo.MIDDLE_INIT
assert(user.hasAttribute(WebADEUserInfo.EMAIL_ADDRE
assert(user.hasAttribute(WebADEUserInfo.PHONE_NUMBE
assert(user.hasAttribute(WebADEUserInfo.EXPIRY_DATE
assert(user.hasAttribute(WebADEUserInfo.IS_VISIBLE)
assert(!user.hasAttribute(GovernmentUserinfo.ACCOUN
assert(!user.hasAttribute(GovernmentUserinfo.EMPLOY
assert(user.hasAttribute(BusinessPartnerUserinfo.BU
assert(user.hasAttribute(BusinessPartnerUserinfo.BU
assert(user.hasAttribute(BusinessPartnerUserinfo.BU

sinessPartnerUserInfo();

TIALS));
E));

)

IAL));
SS));
R));

));

T_TYPE));

EE_ID));
SINESS_ACTIVATION_CODE));
SINESS_GUID));
SINESS_LEGAL_NAME));

2.4.5

RETRIEVING A LIST OF USERS BY ROLE/ORGANIZATION

WebADE (since 4.1.4) allows a developer to query for the list of users granted
access to the current application for a given Role/Organization combination. If
only a role is specified, WebADE returns all Users granted access to that Role
regardless of any Organization restriction placed on the authorization. If only an
Organization is specified, WebADE returns all users with authorizations to work
on behalf of the given organization for the given application, regardless of the

Role. Examples are shown below:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.Role;

import ca.bc.gov.webade.http.HttpRequestUtils;
import ca.bc.gov.webade.user.UserCredentials;

HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(r eq);
Role role = app.getRoles().getRole(“ myRol eNane”);
Organization org = app.getOrganizationByld(00000);
UserCredentials[] creds;
creds = app.getAuthorizedUsers(role);
creds = app.getAuthorizedUsers(org);
creds = app.getAuthorizedUsers(role, org);
NOTE: The getAuthorizedUsers() methods will throw an

IndeterminateAuthorizationsException

when the given Role/Organization

combination is granted to a rule (Example: “All IDIR Users”) or an Active
Directory group. This is due to the inability to traverse these rules and groups to
determine the set of users within. If this does not affect your application, you
can prevent this exception from being thrown by calling the appropriate
overloaded method that has an additional Boolean flag called

Page 14 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

“ignorelndeterminateAuthorizationsErrors” with a value of true. Alternatively, you
can call pre-emptively determine whether the call will throw this exception by
calling the Application class method “hasIndeterminateAuthorizations()” with the
same Role/Organization combination.

2.5 RETRIEVING DATABASE CONNECTIONS SECURELY
In addition to grouping actions, roles also provide separate connection pools, each
with permissions set to perform only the database transactions that are associated
with that role. This is a redundant level of security to help prevent a user's request
from performing any operation that they do not have authorization for.
When your application's business logic requires a connection to the database, you
can use WebADE to retrieve a connection for the associated WebADE action passing
in the requesting user. This will ensure that a database connection with the
appropriate permissions is retrieved. This can be done with code similar to the
following (replacing “myAction” with the name of the target action:

import ca.bc.gov.webade.Action;

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.WebADEUserPermissions;

ServletContext context = ...;
HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(c ontext);

WebADEUserPermissions user = HttpRequestUTtils.getCu rrentUserPermissions(req);

Connection conn = app.getConnectionByAction(user, n ew Action(* myAct i on”));

2.5.1 RETRIEVING A DATABASE CONNECTION WITHOUT A USER-CONTEXT

There are situations that you may require a database connection, but do not have
a user to request for a connection on behalf of. For example:

- On application start-up, during initialization.

- In an automated process, running in the background of an application.

The Application singleton allows for these by a concept called “Priviledged
actions”. A priviledged action is a specially-marked WebADE action that can be
assigned to a role, allowing the developer to obtain that connections from that
role’s connection pool without passing the WebADE a user as context for the
request.

To mark an action as priviledged, the entry in the WebADE ACTION database
table must have the PRIVILEGED_IND column value set to “Y”. By marking this
action as priviledged, the developer can use this action to call the Application
singleton’s method getConnectionByPriviledgedAction(). WebADE will check to
verify that this action is marked as priviledged, and then return a connection
from the associated role’s connection pool. If the given action is not marked as
priviledged in the database, the getConnectionByPriviledgedAction() method will
throw an exception.

Page 15 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

2.6

2.6.1

NOTE: Priviledged actions should be used sparingly and only in the appropriate
circumstances, as they bypass a level of WebADE security. You may be asked by
the ministry, during migration, why your application is using priviledged actions,
and you must be able to provide valid reasons for doing so. Priviledged actions
should not normally be used during the process of an HTTP request, where there
is a user context that can be used to as context for a connection request.

NOTE: It is preferred that priviledged actions be mapped to WebADE Roles that
are only assigned priviledged actions, allowing the associated connection pool’s
database permissions to be restricted to only those permissions needed for the
execution of those priviledged actions.

PREFERENCES

The WebADE also provides access to WebADE Preferences. Preferences come in 5
types: Global, Application, WebADE, Extension, and User. (For more information
about Preferences, including the difference between the 5 types, see the WebADE 4
Administrator’s Guide)

A developer can access application, user, and global preferences through the
WebADE Application singleton.

NOTE: There are two APIs for preferences in the WebADE library. The Preferences,
PreferenceSet, and Preference classes have been deprecated in favour of the
WebADEPreferences, WebADEPreferenceSet, and WebADEPreference classes (located
in the ca.bc.gov.webade.preferences package). This was done to simplify the
preferences API, especially with the addition of the ability to save user preferences.

The older getGlobalPreferences(), getApplicationPreferences(), and
getUserPreferences() methods have been deprecated and replaced with
getWebADEGIobalPreferences(), getWebADEApplicationPreferences(), and

getWebADEUserPreferences() methods, which return the new WebADEPreferences
object. The older methods will still work, but the Preferences classes are now merely
wrappers around the WebADEPreferences classes. Existing applications can continue
to use the deprecated methods, but new applications should switch to the new
methods where possible.

THE WEBADEPREFERENCES INTERFACE

When fetching the application, user, or global preferences, the application
singleton will return a WebADEPreferences object. The WebADEPreferences
object contains the complete set of preferences (global, application, or user),
divided by preference sub-type, which are further divided into individual
preferences and preference sets.

PREFERENCES VS PREFERENCE SETS

Preferences can be divided into individual preferences and preferences grouped
together in a set. A preference in the database belongs in a preference set if the
PREFERENCE_SET_NAME column is not null.

Page 16 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

All preferences with the same preference sub-type and set name will be added to
a WebADEPreferenceSet and stored in the WebADEPreferences object using the
preference sub-type as a hash table-type key. To obtain the preference set from
the WebADEPreferences object, call the WebADEPreferences class’
getPreferenceSet() method, passing in the preference sub-type and preference
set name as String objects. This method will return the WebADEPreferenceSet
object, or null if no set is defined for the given preference sub-type/preference
set name combination.

If a preference is defined without a preference set name, it will be stored
individually in the WebADEPreferences object using the preference sub-type as a
hash table-type key. To obtain the preference from the WebADEPreferences
object, call the WebADEPreferences class’ getPreference() method, passing in the
preference sub-type and preference name as String objects. This method will
return the WebADEPreference object, or null if no preference is defined for the
given preference sub-type/preference name combination.

2.6.2 THE WEBADEPREFERENCESET INTERFACE

A preference set is mainly a set of preferences, all of which have the same
preference set name. Preference sets are used to group like preferences, such as
the configuration preferences for a WebADE User Provider (e.g. the CAP Web
Services User Provider). To obtain a preference from the WebADEPreferenceSet
object, call the WebADEPreferenceSet class’ getPreference() method, passing in
the preference name as a String object. This method will return the
WebADEPreference object, or null if no preference is defined for the given
preference name.

2.6.3 THE WEBADEPREFERENCE INTERFACE

A WebADE preference comprises mostly of a preference nhame and value. The
getPreferenceName() method returns the name of the preference, while the
getPreferenceValue() method returns the preference value as a String.

2.6.4 THE MULTIVALUEWEBADEPREFERENCE INTERFACE

The MultiValueWebADEPreference interface is a sub-class of the
WebADEPreference interface, and supports multi-value preferences. Multi-value
preferences are defined as multiple rows in the PREFERENCE database tables with
the same preference type/sub-type/set nhame/preference name, but with different
preference values. If your application expects a preference to have multiple
values, you will need to check the WebADEPreference object that is returned
from the WebADEPreferences or WebADEPreferenceSet object using an
instanceof class check. For example:

WebADEPreference pref = prefs.getPreference(“test-s ub-type”, “test-pref-name”);
if (pref instanceof MultiValueWebADEPreference) {
MultiValueWebADEPreference multiPref = (MultiVa lueWebADEPreference)pref;

}

Page 17 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

2.6.5

The MultiValueWebADEPreference object has a getPreferenceValues() that
returns the List of preference values for this preference.

APPLICATION PREFERENCES

Application preferences are preferences stored in the WebADE database with a
PREFERENCE_TYPE_CODE column value of “APP”. Application preferences are
application-specific, containing information such as a support contact email
address. To retrieve the set of application preferences for your application, use
the following code:

import ca.bc.gov.webade.Application;
import ca.bc.gov.webade.preferences.WebADEPreferenc es;
import ca.bc.gov.webade.http.HttpRequestUtils;

ServletContext context = ...;
HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(c ontext);
WebADEPreferences preferences = app.getWebADEApplic ationPreferences();

2.6.6

NOTE: The getApplicationPreferences() method will always reload the
preferences from the database. If you are frequently calling this method (One or
more times per request), you may want to cache these values in the session
context, to prevent excessive calls to the database.

USER PREFERENCES

User preferences are preferences stored in the WebADE database with a
PREFERENCE_TYPE_CODE column value of "USR”. User preferences are used to
store preferences that are user-specific for a WebADE application. To retrieve
the set of user preferences for a given user (In this example, the current user),
use the following code:

import ca.bc.gov.webade.Application;

import ca.bc.gov.webade.preferences.WebADEPreferenc es;
import ca.bc.gov.webade.http.HttpRequestUtils;

import ca.bc.gov.webade.user.WebADEUserPermissions;

ServletContext context = ...;
HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(c ontext);
WebADEUserPermissions user = HttpRequestUTtils.getCu rrentUserPermissions(req);
WebADEPreferences preferences = app.getWebADEUserPr eferences(user.getUserCredentials());

Page 18 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

2.6.7 GLOBAL PREFERENCES

Global preferences are preferences stored in the WebADE database with a
PREFERENCE_TYPE_CODE column value of “"GLB”. Global preferences are used to
store preferences that are not application-specific, such as a ministry website
URL. To retrieve the complete set of all global preferences, use the following
code:

import ca.bc.gov.webade.Application;
import ca.bc.gov.webade.preferences.WebADEPreferenc es;
import ca.bc.gov.webade.http.HttpRequestUtils;

ServletContext context = ...;
HttpServletRequest req = ...;

Application app = HttpRequestUtils.getApplication(c ontext);
WebADEPreferences preferences = app.getWebADEGIobal Preferences();

Page 19 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

3. WEB APPLICATIONS AND MVC DESIGN

Web applications developed with WebADE should be developed with the Model-View-Control
style of design, or MVC. MVC is considered the industry standard way of designing
applications. The purpose of MVC is to separate display logic from business logic, allowing
for clean design and ease of maintenance of the application once it has been delivered.

notifications

Display

Eeyboard
Idouse

The current suggested framework for MVC for WebADE is Apache Struts, which is described
below. Regardless of which framework is used, the main concept of MVC, as it pertains to
web applications is that of using a controlling Serviet to handle all requests to a web
application. This means that every link and form in web pages that are part of the “View”
section of the application will send a request to the “Control” Servlet that controls the web
application.

When the “Control” Servlet receives a request, it passes it off to a “"Model” component,
which then performs the business logic of the action related to the request. How a servlet
determines what “"Model” component to pass the request off to is all based on information in
the request, and is dependant on the framework chosen to build an MVC web application.
Again, we describe how Struts implements this in the section below.

3.1 WEBADE AND MVC DESIGN

The best way to load the WebADE is to wuse a combination of a
ServletContextListener to load and initialize the WebADE at application startup, and a
Filter to intercept HTTP Requests to allow the WebADE to pre-processing the request,
setting the current user’s permissions and information in the session and other
internal WebADE processes. To do this, you need to add the following code to your
WEB-INF/web.xml file (in accordance with the web.xml DTD standards):

<context-param>
<param-name>webade.application.acronym</param-nam e>
<param-value>APP</param-value>

</context-param>

Page 20 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

<filter>
<filter-name>WebADE Filter</filter-name>
<filter-class>ca.bc.gov.webade.j2ee.WebADEFilter< [filter-class>
<ffilter>

<filter-mapping>
<filter-name>WebADE Filter</filter-name>
<servlet-name>action</servlet-name>
<[filter-mapping>

<listener>
<listener-class>ca.bc.gov.webade.j2ee.WebADEServl etContextListener</listener-class>
</listener>
The context-param "webade.application.acronym" is required by the

WebADEServletContextListener to load the application singleton for you application.
Set the param-value to the application acronym of your application (The same value
as the APPLICATION_ACRONYM column value of your entry in the WebADE
APPLICATION table).

NOTE: If your are using Struts (See below), ensure your ActionServiet class
configuration DOES NOT contain a reference to the WebADEActionServlet
implemention. The WebADEActionServlet implementation is an older implementation
of the same functionality now provided by the ServletContextListener/Filter
implementation, and is not needed in this deployment strategy.

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionSer vlet</servlet-class>
... More servlet tag config ...
</servlet>

3.1.1 USING CUSTOM SERVLETCONTEXTLISTENERS

If you wish to use custom J2EE ServletContextListeners for application logic at
startup and you require access to the WebADE application singleton or other
WebADE components, you must map your custom ServletContextListener in the
web.xml file using a listener tag set, but declared after the one for the
WebADEServletContextListener, like the example below.

<listener>
<listener-class>ca.bc.gov.webade.j2ee.WebADEServl etContextListener</listener-class>
</listener>

<listener>
<listener-class>ca.bc.gov.custom.CustomServletCon textListener</listener-class>
</listener>

3.1.2 USING CUuSTOM FILTERS

If you wish to use custom J2EE Filters for application logic and you require access
to the requesting user's WebADE permissions and/or information, you can
implement the following code in the doFilter() method in your Filter
implementation:

Page 21 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

/**

* @see javax.servlet.Filter#doFilter(javax.servlet .ServletRequest,
javax.servlet.ServletResponse, javax.servlet.Filter Chain)
*
public void doFilter(ServletRequest request, Servle tResponse response, FilterChain chain) throws
IOException, ServletException {
WebADEUserInfo user = HttpRequestUtils.getCurre ntUserlInfo(httpRequest);
WebADECurrentUserPermissions user = HttpRequest Utils.getCurrentUserPermissions(httpRequest);

... more code here ...

3.2

3.3

Also, when adding your filter and mapping to the web.xml file, remember to use
the same mapping as the WebADE Filter, but declare your mapping after the
<filter-mapping> tag for the WebADE Filter (The J2EE spec declares that filters
are called in order of appearance of their mappings in the web.xml file).

STRUTS

The purpose of the Apache Struts project is to provide a framework that implements
the MVC model of application design in standard a way that makes application code
clear and easy to read. It also adds functionality that makes implementing a web
application easier, with classes that handle form submissions, standard tag libraries
and a “Tiles” framework that aid in display logic, and an XML file-based configuration
that binds an application together, mapping user requests to model code, as well as
defining what JSPs a “Model” component will forward the user's web browser to,
depending on the result of the business logic operation.

The “Control” Servlet class in Struts is called ActionServlet. The ActionServlet will
receive all browser requests and forward these requests off to instances of the Struts
class “Action”. A developer will sub-class this Action class to perform the desired
operation of the application, interpreting the user's request and executing the
desired business logic.

NOTE: This should not be confused with WebADE actions. Although the concepts are
similar, and it is possible that each Struts Action could map one-to-one with a
WebADE action for authorization purposes.

The Struts framework has a lot of nuances, but the intent of this document is not to
be a Struts tutorial. For more information, see the Struts project website at:
http://struts.apache.org/

STRUTS AND THE WEBADE

NOTE: While this method of loading the WebADE is still valid, it is recommended
that new applications use the ServletContextListener/Filter implementation described
above. If you plan on using the WebADEActionServlet to load the WebADE, make
sure you do not include the WebADEServletContextListener/WebADEFilter references
in your web.xml tile, as described above.

WebADE integrates with Struts by extending the ActionServlet class with the
ca.bc.gov.webade.http.WebADEActionServlet. This WebADEActionServiet class
injects WebADE code into 3 points of the ActionServlet’s processing.

Page 22 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

1) On initialization of the servlet, WebADE also creates the WebADE database
connection pool and loads its configuration settings, WebADE extensions, and
application-specific connection pools for use in the web application.

2) Also on initialization, the WebADEActionServlet provides an init() method that
can be overridden by the developer to provide application-specific
initialization at this time.

3) On receiving a user’'s request, WebADE will initialize the user’s session and
check for any organization selection and user agreements that need to be
performed before hading the request to the application’s request-processing
code (in the form of custom Struts Actions.

If you wish to use the WebADEActionServlet to load the WebADE, you are required to
extend the WebADEActionServlet class with your own, application-specific
implementation and implement the getApplicationCode() method, returning the
application acronym of your application (The same value as the
APPLICATION_ACRONYM column value of your entry in the WebADE APPLICATION
table).

Then, in your web.xml file, you will need to declare your custom servlet as the Struts
controller servlet for your application. Below is an example of a proper mapping:

<servlet>

<servlet-
<servlet-

name>action</servlet-name>
class>com.example.MyWebADEActionServlet< [servlet-class>

... More servlet tag config ...

</serviet>

3.3.1

3.4

THE WEBADEACTION CLASS

Usually, a Struts developer will extend the org.apache.struts.Action class to
create their application’s actions. However, you may wish to extend the
ca.bc.gov.webade.http.WebADEAction class instead. The WebADEAction simply
provides a couple helper methods to obtain the ServietContext and Application
singleton directly, giving a little streamlining to WebADE development. Extending
the WebADEAction class is not necessary for a J2EE application to be WebADE
compliant.

MORE INFORMATION

Please see the Apache Struts website for more information about configuring and
using Struts.

Page 23 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

4. WEB APPLICATION INITIALIZATION

As any web application has many resources that need to be initialized before the application
can handle user requests, such as connection pools, resource files, or even autonomous
processes, a certain amount of processing must occur at the point the application is started
inside the web container. This section gives details about this initialization, as well as the
overall configuration and administration of a WebADE application.

4.1

4.2

4.3

CONFIGURING THE WEBADE

Most of the WebADE's settings are configured in the WebADE database. This allows
for security of configuration settings, restricting access to these settings to database
administrators, and a separation of the configuration from the compiled application
WAR or EAR file, allowing settings to change in the application without the need to
redeploy.

Of course, the primary difficulty with using a database is that WebADE needs to be
made aware of how to connect to that database. This is achieved by creating a
compiled Java library of a properly configured WebADEConnection class. For
information on configuring and creating this library, see the WebADE 4
Administrator's Guide.

WHAT THE WEBADE DOES AT STARTUP

When the WebADE is loaded at web application initialization by the controlling
Servlet, it performs the following initialization steps.

1) WebADE Iloads the WebADE database connection settings from the
WebADEConnection jar, creating a connection pool for this database, to be used
internally.

2) WebADE connects to the WebADE database, loading the application's role and
action settings.

3) For each role, WebADE creates a connection pool, using the connection pool
settings stored in the WebADE database. If a role does not require a WebADE
connection pool (No connection pool settings are in the WebADE database for this
role), this step is skipped.

4) WebADE loads the LDAP configuration settings for all domains supported by the
web application. Connections to LDAP are used to load user information for all
users of the application, excluding authorization information.

5) WebADE loads any WebADE extensions configured for the application, storing a
reference to them in the Application singleton.

ADAM

ADAM is the web application that is used to manage user access to WebADE
applications. As a WebADE database is used to manage any number of web
applications, ADAM is used to manage the authorizations for these users for all
applications installed in a given WebADE database.

Page 24 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

ADAM provides two main advantages; centralized, consistent method of granting
users to applications, regardless or the differences in applications, and a distributed
management of these authorizations. ADAM allows top-level administrators to
delegate applications the management of user authorizations for a defined set of
users, such as all ministry workers or a private company, to another individual. This
delegation restricts that individual to only be able to administrate a subset of users,
and only for the application roles that the top-level administrator authorizes the
individual for.

It should be noted that ADAM is a very complex application, and a much more
thorough explanation can be found in the ADAM User's Guide.

Page 25 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

5. WEBADE AND MANAGEMENT OF A USER’S SESSION

When a user connects to a WebADE web application, WebADE must manage a certain
amount of information about the user and associate it with the user’s session. At the
creation of a new session, WebADE loads the user’s personal information, such as name,
user id, and email address and makes this available to the web application for use in any
business logic that may require it. Also at session creation, the WebADE performs two
optional operations; organization selection and user agreements.

5.1

5.1.1

ORGANIZATION SELECTION

As an option, while configuring your WebADE application’s authorizations in ADAM,
you can set it up so that when users are granted access to a role, it is done on behalf
of an organization. This means that, when the user creates a session with the web
application, they do so on behalf of an organization. The primary advantage of doing
this is to allow a user to have varying levels of authorization on an organization-by-
organization basis.

For example, user John Doe could have “User” access to an application on behalf of
company ABC, but he could be granted “Administrator” access to an application on
behalf of company XYZ. When John logs into the web application, he will be
presented with a list of all organizations that he has been granted access to the
application on behalf of. When he selects one of the organizations from the list, he
will be restricted in access to the application to only the authorizations granted to
him on behalf of the selected organization.

Granting a user authorization on behalf of an organization can be done using ADAM.
Please see the ADAM User’s Guide for more information.

CONFIGURING ORGANIZATION SELECTION FOR AN APPLICATION

When a WebADE application secures some or all of its roles by organization, it is
often desirable to have the WebADE application require users to select one of the
organizations that they have been authorized access to the application on behalf
of, at the creation of a new web session with the application.

To enable organization selection for a WebADE web application, you will need to
add and configure the Organization Selection Filter in your application’s web.xml
file.

NOTE: When adding the Organization Selection Filter to your application, you
should add a filter-mapping for this filter matching each WebADE Filter filter-
mapping configured in your application. When adding the filter-mappings make
sure that the Organization Selection Filter filter-mapping is added after the
matching WebADE Filter filter-mapping, as the Organization Selection Filter
expects the WebADE Filter to have already handled the request.

See the example below for a basic configuration of the Organization Selection
Filter:

Page 26 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

<filter>
<filter-name>WebADE Filter</filter-name>
<filter-class>ca.bc.gov.webade.j2ee.WebADEFilte r<ffilter-class>
<ffilter>

<filter>
<filter-name>Organization Selection Filter</fil ter-name>
<filter-class>ca.bc.gov.webade.j2ee.Organizatio nSelectionFilter<ffilter-class>
<ffilter>

<filter-mapping>
<filter-name>WebADE Filter</filter-name>
<servlet-name>action</servlet-name>
<[filter-mapping>

<filter-mapping>
<filter-name>Organization Selection Filter</fil ter-name>
<servlet-name>action</servlet-name>

<[filter-mapping>

<servlet>
<servlet-name>action</servlet-name>
<display-name>Struts Action Servlet</display-na me>
<servlet-class>org.apache.struts.action.ActionS ervlet</servlet-class>
</servlet>
If this filter is added to your application, when a user logs in, they will be
presented with an organization-selected page, instructing them to select one of
the organizations on behalf of which they have application authorizations, to use
as their selected organization for the current web session. Once they select an
organization, they will only have access to the application functionality specific to
the application roles granted to them on behalf of the given organization.
NOTE: If a user checks the "Set as Default" flag on the organization-selected
page when choosing an organization, that organization will be highlighted in the
organization drop-down list by default any time in the future that a user logs in to
the application and is presented the organization-selected page. This is called
the user's default organization.
NOTE: If a user only has application roles granted on behalf of one organization,
this organization will automatically be set as the selected organization, and they
will not be prompted by the organization-selected page.
SELECT-BY-ORGANIZATION-TYPE SETTING
If you want to have the Organization Selection Filter only allow the user to select
their session organization from government organizations or only from non-
government organizations, add an init-param to the filter declaration with a
param-name of “webade.default.organization.select.by.organization.type” and a
param-value of “government” for government organization only selection or
“non-government” for non-government organization only selection. For example:
<filter>
<filter-name>Organization Selection Filter</fil ter-name>
<filter-class>ca.bc.gov.webade.j2ee.Organizatio nSelectionFilter<ffilter-class>
<init-param>
<param-name>webade.default.organization.sel ect.by.organization.type</param-name>

<param-value>non-government</param-value>

Page 27 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

</init-param>

<ffilter>
USE-DEFAULT-ORGANIZATION SETTING
If you wish to have the user's default organization (see above) selected
automatically (thus bypassing the organization-selection page completely) when
the user logs in to your application, add an init-param to the filter declaration
with a param-name of “webade.use.default.organization.enabled” and a param-
value of “true”. For example:
<filter>
<filter-name>Organization Selection Filter</fil ter-name>
<filter-class>ca.bc.gov.webade.j2ee.Organizatio nSelectionFilter<ffilter-class>
<init-param>
<param-name>webade.use.default.organization .enabled</param-name>

<param-value>false</param-value>
</init-param>

<ffilter>
CUSTOM DEFAULT-ORGANIZATION-SWITCH-PAGE SETTING
If you wish to use a custom organization-selection page, add an init-param to the
filter declaration with a param-name of
“webade.default.organization.switch.page” and a param-value set to the path,
relative to the root of the application, for the custom organization selection JSP.
For example:
<filter>
<filter-name>Organization Selection Filter</fil ter-name>
<filter-class>ca.bc.gov.webade.j2ee.Organizatio nSelectionFilter<ffilter-class>
<init-param>
<param-name>webade.default.organization.swi tch.page</param-name>

<param-value>test.jsp</param-value>
</init-param>
<ffilter>

5.2 USER AGREEMENTS

Another optional component is the ability to present the user with a user agreement.
User agreements are documents that a user must agree to before gaining access to
the application. If your application has any agreements set when a user logs in that
the user has not agreed to, they will be presented with the agreement and required
to agree to it before accessing the application.

Assigning an agreement to your application can be done inside of ADAM. Please see
the ADAM User’s Guide for more information.

Page 28 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

6. ADVANCED TOPICS

The following topics are considered more “advanced”, and it is possible for a WebADE
application to be developed without using any of this functionality. If this is your first
WebADE application, we would recommend you start developing using what you have
learned so far, returning to this section once you feel comfortable with the core WebADE

API.

6.1

6.2

6.2.1

6.2.2

DATABASE CONNECTIONS AND CONNECTION POOLS

WebADE provides a robust connection pool API based on the
javax.sql.PooledConnection specification. WebADE connection pools have the
advantages of being very configurable, self-monitoring, and provide extensive
logging for debugging purposes.

WebADE connection pools will even self-close connections, statements, and result
sets that a developer forgets to close before the object leaves scope, providing
helpful logging for the developer to help detect such situations so they can be
cleaned up in the development process. As issues like these can easily make it into
a production environment without notice, these measures greatly reduce
administrative problems that arise when an application is deployed.

For more information on WebADE connection pools, please see the WebADE
Connection Pooling Guide.

WEBADE EXTENSIONS

WebADE allows extensions to be created and registered with the core WebADE at
runtime. A registered extension has access to the WebADE database connection, as
well as a reference to the Application singleton.

CREATING A WEBADE EXTENSION

To create a new WebADE extension, create a new class, extending the ca.bc.gov.
webade.WebADEExtension class. Please note that extensions of this base class
are intended to be singleton objects, so your code should be developed with this
in mind.

Your extension singleton class must have a public default constructor. This
constructor is called during the start-up of the web application on the server,
when extensions are registered with the application singleton.

REGISTERING A WEBADE EXTENSION

In order to register a WebADE extension with the application singleton, it needs
to be configured with a valid set of preferences stored in the WebADE
PREFERENCES table. A WebADE extension requires the creation of two types of
preferences; extension and application. This section assumes the reader is
familiar with WebADE preferences and understands how to create WebADE

Page 29 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

preferences of all types. For a detailed explanation of WebADE preferences,
please see the WebADE Administrator’s Guide.

EXTENSION PREFERENCES

WebADE extension-type preferences are used exclusively to initialize WebADE
extensions. A WebADE extension uses these preferences to initialize itself at
application start-up.

A WebADE extension can have any number of preferences and preference sets,
and naming for these are up to the extension developer. There are only three
mandatory rules that must be followed:

1) All extension preferences must have a PREFERENCE_TYPE value of “"EXT".

2) All extension preferences for the same extension must share the same
“preference sub-type” name. This name should be the extension’s name
(such as “reporting” or “services”) in lowercase letters.

3) There must be a preference defined for the extension with a null
preference set nhame, a preference name of “extension-class-name”, and a
value of the fully-qualified class name of the class that extends the
ca.bc.gov.webade.WebADEExtension abstract class (Example:
“ca.bc.gov.webade.myextension.MyExtension”).

4) There must be a preference defined for the extension with a null
preference set name, a preference name of “enabled”, and a value of
either “true” or “false”. With a value of “true”, the extension will be
loaded by the WebADE at startup. With a value of “false”, the extension
will be ignored at startup.

OTHER EXTENSION REGISTRATION NOTES

When an extension is registered with the application class, it is handed a
reference to the application object, which can be accessed by the getApplication()
method in the WebADEExtension class.

Connections to the WebADE database can be obtained by calling the
getADEConnection() method. Please note that connections obtained this way
should be closed by calling the releaseADEConnection() method, instead of calling
the Connection.close() method.

EXISTING WEBADE EXTENSIONS AND THE NEW PREFERENCES API

For existing WebADE Extensions (Compiled against a WebADE release before
version 04_01_08) to be successfully built against the current WebADE API, they
will need code change, extending the WebADEExtension abstract method
“init(ca.bc.gov.webade.preferences.WebADEPreferences)”. This method should
be used instead of the now deprecated “init(ca.bc.gov.webade.Preferences)”
method to initialize the extension. See the section on the WebADEPreferences
API in this document for information on how to use this new API.

Page 30 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

6.3

6.3.1

NOTE: Existing WebADE Extension binaries do not require code change to be
used in WebADE applications using the current release of the WebADE. Only new
releases of existing WebADE Extensions require this change.

SEARCHING

It is sometimes necessary for a WebADE application to perform searches of users
and organizations. Searching for each type is similar in implementation, but is
flexible enough to allow for different data sources within the same WebADE system.

As each WebADE environment is unique, searching for user and organization data
within the WebADE can vary slightly from system to system. For instance, in one
system, user’s email addresses may not be supported, and so searching for them
would not produce any results. In another system, it may not be possible to search
by first name or last name. Fortunately, WebADE's searching functionality allows for
developers to determine at runtime the available searchable attributes for users and
organizations, allowing for flexibility without code change.

SEARCH OBJECTS AND SEARCH ATTRIBUTES

Searching for users and organizations both involve populating the appropriate
Search Object’s Search Attributes, and submitting this search object to WebADE.

SEARCH OBJECTS

A Search Object is a metadata object that defines the searchable attributes for
the target data type (WebADEUserInfo or Organization), including the attribute’s
type, allowable values, supported flag, and other options, like optional indicator
and wildcard search settings.

Each attribute of a Search Object will be represented by a class that extends the
SearchAttribute abstract class. This class has one property, the “supported” flag.
This flag is set for the specific WebADE environment, and indicates whether this
attribute can be used for searching in that particular WebADE instance. The
subclasses of SearchAttribute are described below.

TEXTSEARCHATTRIBUTE

This attribute class defines a field that is searchable by any text pattern. This
means that there is very little validation that can be performed. This searchable
field would be presented to the user as an editable text field.

The TextSearchAttribute has two additional properties: searchValue and
wildcardOption. The searchValue should be set to whatever value the user typed
in the text field. The wildcardOption should be set to one of:
WildcardOptions.EXACT_MATCH, WildcardOptions.WILDCARD_LEFT,
WildcardOptions.WILDCARD_RIGHT, or WildcardOptions.WILDCARD_BOTH.

e EXACT_MATCH means to search for values that match exactly what the
user typed.

e WILDCARD_LEFT means to search for values that end with the value the
user typed.

Page 31 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

6.3.2

« WILDCARD_RIGHT means to search for values that start with the value
the user typed.

« WILDCARD _BOTH means to search for values that contain the value the
user typed.

OPTIONSEARCHATTRIBUTE

This attribute defines a field that is searchable only by a fixed range of values.
This searchable field would be presented to the user as a dropdown list.

The OptionSearchAttribute has three additional properties: searchValue,
searchOptions, and optional flag. The searchValue should be set to whatever
value the user selected from the dropdown list. The searchOptions are the values
to be used to populate that list, and the optional flag indicates whether the user
must select a search value for this attribute.

DATESEARCHATTRIBUTE

This attribute defines a date field that allows a user to search for a specific date.
This attribute has three properties: maxStartDate, maxEndDate, and searchDate.
The maxStartDate and maxEndDate define the earliest and latest valid search
date the user can enter, while the searchDate is to be set to the date the user
entered.

ORGANIZATION SEARCHING

Searching for organizations is performed in three steps: retrieving an
OrganizationSearchObject instance, populating the search object with details of
the search, submitting the search object to WebADE and iterating the search
results.

RETRIEVING AN ORGANIZATIONSEARCHOBIJECT INSTANCE

To obtain a properly configured OrganizationSearchObject from WebADE, call the
ca.bc.gov.webade.Application method “getOrganizationSearchMetadata()”. This
method returns an OrganizationSearchObject instance that is properly configured
for WebADE organization searching within the specific WebADE instance.

POPULATING THE SEARCH OBJECT

Organizations, by default, allow for searching by organization name and type
code. The OrganizationSearchObject has two search attributes; name and
organizationTypeCode. The name attribute is a TextSearchAttribute, as
described above, while the organizationTypeCode, is an OptionSearchAttribute.

SUBMITTING THE QUERY TO WEBADE AND RETRIEVING THE RESULTS

Once you have populated the Search Object with the desired search criteria, pass
this Search Object back to the WebADE, by calling the Application’s
findOrganizations() method. This method will return a List of matching
Organization objects, which you can then iterate over.

Page 32 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

6.3.3

USER SEARCHING

Searching for users is similar to organization searching, with the exception that,
instead of one Search Object, there is one search object for each source directory
supported by this WebADE installation. Examples of source directories would be
the IDIR and BCelD domains.

RETRIEVING THE USERSEARCHOBJECT INSTANCES

To obtain the set of properly configured UserSearchObject instances from
WebADE, call the ca.bc.gov.webade.Application method “getUserSearchMetadata
()”. This method returns a List of UserSearchObject instances that is properly
configured for WebADE user searching within the specific WebADE instance.

POPULATING THE SEARCH OBJECT

First you must iterate over the Ilist of UserSearchObjects, calling the
getSearchDirectory() method and comparing the value with the target domain
you wish to seach for users in. The UserSearchObject has many search
attributes, including user id, first name, last name, phone number, email, middle
initial, and GUID. Not all attributes are supported for all source directories, so
you will have to call the isSupported() method at runtime on each attribute to
determine if it can be used for your search.

SUBMITTING THE QUERY TO WEBADE AND RETRIEVING THE RESULTS

Once you have populated the Search Object with the desired search criteria, pass
this Search Object back to the WebADE, by calling the Application’s
findWebADEUsers() method. This method will return an array of matching
WebADEUserInfo objects, which you can then iterate over.

NOTE: When searching for users in a WebADE database application, users are
located by directly querying the user-provider (ex: CAP web-services), and
entries in the WebADE database user table are ignored. If a user is not in the
user table, the findWebADEUsers() method will not make an entry for them. To
ensure that a target user is in the WebADE database user table, you must call the
Application’s getWebADEUserInfo() method after the user search.

6.4 MANAGING USER PREFERENCES

A WebADE application can manage user preferences (edit, add, and delete) for
each user of that application. This allows a developer to customize the
application for each user triggered by runtime actions like user-input.

To manage a user’s preferences, you must first obtain the user’'s WebADE User
Preferences from the WebADE application singleton (See User Preferences).

EDITING A PREFERENCE

To edit an existing preference, first retrieve the desired preference from the
user's WebADEPreferences object. If the preference is in a preference set, use
the getWebADEPreferenceSet() method to retrieve the preference set, and then

Page 33 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

call the getWebADEPreference() method on this preference set to get the desired
WebADEPreference. If the preference is not in a set, retrieve the desired
preference from the user's WebADEPreferences object, using the
getWebADEPreference() method. After you have the WebADEPreference object,
set the preference value to the desired value using the object's
setPreferenceValue() method.

ADDING A NON-PREFERENCE-SET PREFERENCE

To add a brand new preference to a user's preferences, first, create a new
WebADEPreference using the DefaultWebADEPreference concrete class (also in
the ca.bc.gov.webade.preferences package), passing in the preference name as a
parameter to the constructor. Before adding the preference to the user's
WebADEPreferences instance, you must set the preference value using the
setPreferenceValue() method. Then, call the addPreference() method on the
WebADEPreferences object, passing in the preference sub-type as a String (all
preferences must have a sub-type), and the WebADEPreference object as the
new preference.

ADDING A PREFERENCE-SET PREFERENCE

To add a brand new preference to an existing preference set in a user's
preferences, fetch the desired preference set from the user's WebADEPreferences
object, using the getWebADEPreferenceSet() method, passing in the preference
set's preference sub-type and preference set name. Then, create a new
WebADEPreference using the DefaultWebADEPreference concrete class (also in
the ca.bc.gov.webade.preferences package), passing in the preference name as a
parameter to the constructor. Before adding the preference to the preference
set, you must set the preference value, using the setPreferenceValue() method.
Then, call the addPreference() method on the WebADEPreferenceSet object,
passing in the WebADEPreference object as the new preference.

DELETING A NON-PREFERENCE-SET PREFERENCE

To delete a preference that is not in a WebADEPreferenceSet, call the
WebADEPreferences instance’s removePreference() method, passing in the
preference sub-type and preference name as Strings.

DELETING A PREFERENCE-SET PREFERENCE

To delete a preference that is in a WebADEPreferenceSet, call the
WebADEPreferenceSet instance’s removePreference() method, passing in the
preference sub-type and preference name as Strings.

SAVING THE USER’S PREFERENCE

After you have finished modifying a user's preferences, you must save them back
to the database, using the WebADE Application singleton method
saveWebADEUserPreferences(), passing in the user's credentials and the modified
WebADEUserPreferences object. WebADE will save the user's preferences back
to the database.

Page 34 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

NOTE: You may not edit or add a multi-value user preference using this API.
Doing so will result in a WebADEException when trying to save these preferences
to the database.

6.5 ALLOWING BCEID USERS TO VIEW AN IDIR USER EMAIL
ADDRESS

The CAP web services do not currently allow a BCeID user logged in to a WebADE
application to view IDIR users’ email address. However, certain applications require
this email address for application functionality.

WebADE has a setting that will allow this CAP web services to be overridden, using
the email address from the WebADE database and returning it to the user. To turn
this functionality on, you will need to add the following WebADE preference to the
CAP web services user provider (“bceid-web-services-provider”) by adding it in the
PREFERENCE table of the WebADE database:

COLUMN NAME COLUMN VALUE

PREFERENCE_ID preference_seq.NEXTVAL
PREFERENCE_TYPE_CODE | “WDE"

PREFERENCE_SUB_TYPE “user-provider”

APPLICATION_ACRONYM “your-application-acronym”
PREFERENCE_SET_NAME “bceid-web-services-provider”
PREFERENCE_NAME “load-idir-email-address-for-bceid-users”
PREFERENCE_VALUE “true”

Page 35 of 36

BC Provincial Government WebADE 4.2.0 User’s Guide

7. RELATED DOCUMENTATION AND LINKS

WebADE 4 - Administrator’s Guide http://www.webade.org/
WebADE 4 - Connection Pooling Guide http://www.webade.org/
WebADE 4 - What's New http://www.webade.org/
Javasoft Website http://java.sun.com/

Struts Project Website http://struts.apache.org/
ADAM User’s Guide http://www.webade.org/

Page 36 of 36

	1. INTRODUCTION TO THE WEBADE
	1.1 OVERVIEW
	1.2 PREREQUISITES

	2. THE WEBADE APPLICATION SINGLETON
	2.1 TESTING THE SAMPLES OUTSIDE A WEB APPLICATION
	2.2 USER CREDENTIALS
	2.3 USER AUTHORIZATIONS
	2.3.1 SECURED-BY-ORGANIZATION VS NON-SECURED-BY-ORGANIZATION
	2.3.2 RETRIEVING OTHER USERS PERMISSIONS
	2.3.3 OTHER ATTRIBUTES

	2.4 USER INFORMATION
	2.4.1 RETRIEVING OTHER USERS INFORMATION
	2.4.2 WEBADEUSERINFO ATTRIBUTES
	2.4.3 ADDITIONAL USER TYPE-SPECIFIC ATTRIBUTES
	2.4.4 USING THE WEBADEUSERINFO GETATTRIBUTE() METHOD
	2.4.5 RETRIEVING A LIST OF USERS BY ROLE/ORGANIZATION

	2.5 RETRIEVING DATABASE CONNECTIONS SECURELY
	2.5.1 RETRIEVING A DATABASE CONNECTION WITHOUT A USER-CONTEXT

	2.6 PREFERENCES
	2.6.1 THE WEBADEPREFERENCES INTERFACE
	2.6.2 THE WEBADEPREFERENCESET INTERFACE
	2.6.3 THE WEBADEPREFERENCE INTERFACE
	2.6.4 THE MULTIVALUEWEBADEPREFERENCE INTERFACE
	2.6.5 APPLICATION PREFERENCES
	2.6.6 USER PREFERENCES
	2.6.7 GLOBAL PREFERENCES

	3. WEB APPLICATIONS AND MVC DESIGN
	3.1 WEBADE AND MVC DESIGN
	3.1.1 USING CUSTOM SERVLETCONTEXTLISTENERS
	3.1.2 USING CUSTOM FILTERS

	3.2 STRUTS
	3.3 STRUTS AND THE WEBADE
	3.3.1 THE WEBADEACTION CLASS

	3.4 MORE INFORMATION

	4. WEB APPLICATION INITIALIZATION
	4.1 CONFIGURING THE WEBADE
	4.2 WHAT THE WEBADE DOES AT STARTUP
	4.3 ADAM

	5. WEBADE AND MANAGEMENT OF A USERS SESSION
	5.1 ORGANIZATION SELECTION
	5.1.1 CONFIGURING ORGANIZATION SELECTION FOR AN APPLICATION

	5.2 USER AGREEMENTS

	6. ADVANCED TOPICS
	6.1 DATABASE CONNECTIONS AND CONNECTION POOLS
	6.2 WEBADE EXTENSIONS
	6.2.1 CREATING A WEBADE EXTENSION
	6.2.2 REGISTERING A WEBADE EXTENSION

	6.3 SEARCHING
	6.3.1 SEARCH OBJECTS AND SEARCH ATTRIBUTES
	6.3.2 ORGANIZATION SEARCHING
	6.3.3 USER SEARCHING

	6.4 MANAGING USER PREFERENCES
	6.5 ALLOWING BCEID USERS TO VIEW AN IDIR USER EMAIL ADDRESS

	7. RELATED DOCUMENTATION AND LINKS

